

RISING COIN SMART CONTRACT, CODE REVIEW AND SECURITY ANALYSIS REPORT

Customer:Rising CoinPrepared on:23 May 2021Platform:EthereumLanguage:Solidity

TABLE OF CONTENTS

Document	4
Introduction	5
Project Scope	6
Executive Summary	6
Code Quality	8
Documentation	9
Use of Dependencies	10
AS-IS Overview	11
Severity Definitions	12
Audit Findings	13
Conclusion	14
Our Methodology	15
Disclaimers	17

THIS DOCUMENT MAY CONTAIN CONFIDENTIAL INFORMATION ABOUT ITS SYSTEMS AND INTELLECTUAL PROPERTY OF THE CUSTOMER AS WELL AS INFORMATION ABOUT POTENTIAL VULNERABILITIES AND METHODS OF THEIR EXPLOITATION.

THE REPORT CONTAINING CONFIDENTIAL INFORMATION CAN BE USED INTERNALLY BY THE CUSTOMER OR IT CAN BE DISCLOSED PUBLICLY AFTER ALL VULNERABILITIES ARE FIXED - UPON DECISION OF CUSTOMER.

Document

Name	Smart Contract Code Review and Security Analysis Report of Rising Coin
Platform	ETH / Solidity
File	Adjuster.sol
MD5 hash	4B50315D635F06056CB502E8897 617D6
SHA256 hash	3DFF5C09966E69987465698EB91 E7DDDBE630FD7E7F53E241DEA BF1DECAF73AF
File	FullMath.sol
MD5 hash	5A4D96709E77367F995BE60CB4 4056DF
SHA256 hash	4E9B040D4A5DC8E788FC8F02F9 6FFA6133433B1518599C25C2A35 822C42D4DF5
File	RC.sol
MD5 hash	A5D3B34A972212AF6D2E7D003E D45D4C
SHA256 hash	6FA89C24D83ADE8321154E4053 16D9135D944C4D38A1B0DB5A90 FB0D9F0F860B
Date	23/05/2021

Introduction

RD Auditors (Consultant) was contracted by Rising Coin (Customer) to conduct a Smart Contracts Code Review and Security Analysis. This report represents the findings of the security assessment of the customer's smart contracts and its code review conducted between 17 - 23 May 2021.

This contract consists of 3 files.

Project Scope

The scope of the project is a smart contract.

We have scanned this smart contract for commonly known and more specific vulnerabilities, below are those considered (the full list includes but is not limited to):

- Reentrancy
- Timestamp Dependence
- Gas Limit and Loops
- DoS with (Unexpected) Throw
- DoS with Block Gas Limit
- Transaction-Ordering Dependence
- Byte array vulnerabilities
- Style guide violation
- Transfer forwards all gas
- ERC20 API violation
- Malicious libraries
- Compiler version not fixed
- Unchecked external call Unchecked math
- Unsafe type inference
- Implicit visibility level

Executive Summary

According to the assessment, the customer's solidity smart contract is **well** secured.

Insecure	Poorly secured	Secure	Well-secured	
You are here				

Automated checks are with smartDec, Mythril, Slither and remix IDE. All issues were performed by our team, which included the analysis of code functionality, manual audit found during automated analysis were manually reviewed and applicable vulnerabilities are presented in the audit overview section. The general overview is presented in the AS-IS section and all issues found are located in the audit overview section.

We found 0 critical, 0 high, 0 medium, 0 low and 0 very low level issues.

Code Quality

The link within this report, contains SafeMath, Address, ownable, ERC20 from the popular open source.

The libraries within this smart contract are part of a logical algorithm. A library is a different type of smart contract that contains reusable code. Once deployed on the blockchain (only once), it is assigned to a specific address and its properties/methods can be reused many times by other contracts.

The Rising Coin team has **not** provided scenario and unit test scripts, which would help to determine the integrity of the code in an automated way.

Overall, the code is well commented. Commenting provides rich documentation for functions, return variables and more and also helps auditors to quickly cover the flow behind code logic. Use of Ethereum Natural Language Specification Format (NatSpec) for commenting is recommended.

Documentation

We were given the Rising Coin smart contract as a Github link:

https://github.com/risingcoin/contracts/commit/4c276bf5c177e9e08c389a8 01f6bd10b2d8eca67

The hash of that file is mentioned in the table. As mentioned, it's well commented code so anyone can quickly understand the programming flow as well as complex code logic. Comments are very helpful in understanding the overall architecture of the protocol. It also provides a clear overview of the system components, including helpful details, like the lifetime of the background script.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure. Those were based on well known industry standard open source projects and even core code blocks that are written well and systematically.

AS-IS Overview

Rising Coin

A revolutionary cryptocurrency with an innovative approach to game theory, market making and automated marketing, engineered to create a constant upward pressure on its price.

File And Function Level Report

File: RisingCoin.sol

Contract:	Rising Coin	
Import:	FullMath, RC	
Observation:	Passed	
Test Report:	Passed	
Score:	Passed	
Conclusion:	Passed	

SI.	Function	Туре	Observation	Test Report	Conclusion	Score
1	addAllowedPair	write	Passed	All Passed	No Issue	Passed
2	removeAllowedPair	write	Passed	All Passed	No Issue	Passed
3	adjust	write	Passed	All Passed	No Issue	Passed
4	adjustCalc	read	Passed	All Passed	No Issue	Passed
5	getDaysDiff	read	Passed	All Passed	No Issue	Passed
6	getReserves	read	Passed	All Passed	No Issue	Passed
7	getAmountIn	read	Passed	All Passed	No Issue	Passed
8	getAmountOut	read	Passed	All Passed	No Issue	Passed
9	quoteB	read	Passed	All Passed	No Issue	Passed
10	pow	read	Passed	All Passed	No Issue	Passed

Severity Definitions

Risk Level	Description
Critical	Critical vulnerabilities are usually straightforward to exploit and can lead to lost tokens etc.
High	High level vulnerabilities are difficult to exploit; however, they also have a significant impact on smart contract execution, e.g. public access to crucial functions.
Medium	Medium level vulnerabilities are important to fix; however, they cannot lead to lost tokens.
Low	Low level vulnerabilities are most related to outdated, unused etc. These code snippets cannot have a significant impact on execution.
Lowest Code Style/ Best Practice	Lowest level vulnerabilities, code style violations and information statements cannot affect smart contract execution and can be ignored.

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

No low severity vulnerabilities were found.

Very Low

No very low severity vulnerabilities were found.

Discussion:

Use Safemath functions for calculation.

Conclusion

We were given a contract file and have used all possible tests based on the given object. The contract is written systematically, so it is ready to go for production.

Since possible test cases can be unlimited and developer level documentation (code flow diagram with function level description) not provided, for such an extensive smart contract protocol, we provide no such guarantee of future outcomes. We have used all the latest static tools and manual observations to cover maximum possible test cases to scan everything.

The security state of the reviewed contract is now "well secured"

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our security audits are to improve the quality of systems we review and aim for sufficient remediation to help protect users. The following is the methodology we use in our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error handling, protocol and header parsing, cryptographic errors, and random number generators. We also watch for areas where more defensive programming could reduce the risk of future mistakes and speed up future audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior when it is relevant to a particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration testing. We look at the project's web site to get a high level understanding of what functionality the software under review provides. We then meet with the developers to gain an appreciation of their vision of the software. We install and use the relevant software, exploring the user interactions and roles. While we do this, we brainstorm threat models and attack surfaces. We read design documentation, review other audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and generally investigate details other than the implementation.

Documenting Results:

We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing them through successful remediation. Whenever a potential issue is discovered, we immediately create an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of the issue. This process is conservative because we document our suspicions early even if they are later shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the suspicion with unresolved questions, then confirming the issue through code analysis, live experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test code, log captures, or screenshots demonstrating our confirmation. After this we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we suggest the requirements for remediation engineering for future releases. The mitigation and remediation recommendations should be scrutinised by the developers and deployment engineers, and successful mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the details are made public.

Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with the best industry practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in smart contract source code, the details of which are disclosed in this report, (Source Code); the Source Code compilation, deployment and functionality (performing the intended functions).

Because the total number of test cases are unlimited, the audit makes no statements or warranties on the security of the code. It also cannot be considered as a sufficient assessment regarding the utility and safety of the code, bugfree status or any other statements of the contract. While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only we recommend proceeding with several independent audits and a public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform, its programming language, and other software related to the smart contract can have their own vulnerabilities that can lead to hacks. Thus, the audit can't guarantee explicit security of the audited smart contracts.

Email: info@rdauditors.com

Website: www.rdauditors.com